• El rover Mars Perseverance de la NASA aterriza en Marte

    El rover Mars Perseverance de la NASA aterriza en Marte0

    El rover más grande y avanzado que la NASA ha enviado a otro mundo aterrizó en Marte el jueves, después de un viaje de 203 días que atravesó 293 millones de millas (472 millones de kilómetros). La confirmación del aterrizaje exitoso se anunció en el control de la misión en el Laboratorio de Propulsión a Chorro de la NASA en el sur de California a las 3:55 pm EST (12:55 pm PST). Equipada con tecnología innovadora, la misión Mars 2020 se lanzó el 30 de julio de 2020 desde la Estación de la Fuerza Espacial de Cabo Cañaveral en Florida. La misión del rover Perseverance marca un ambicioso primer paso en el esfuerzo por recolectar muestras de Marte y devolverlas a la Tierra.  Aproximadamente del tamaño de un automóvil, el geólogo y astrobiólogo robótico de 1.026 kilogramos (2.263 libras) se someterá a varias semanas de pruebas antes de comenzar su investigación científica de dos años del cráter Jezero de Marte. Si bien el rover investigará la roca y el sedimento del antiguo lecho del lago y delta del río Jezero para caracterizar la geología y el clima pasado de la región, una parte fundamental de su misión es la astrobiología, incluida la búsqueda de signos de vida microbiana antigua. Con ese fin, la campaña Mars Sample Return, planificada por la NASA y la ESA (Agencia Espacial Europea), permitirá a los científicos en la Tierra estudiar muestras recolectadas por Perseverance para buscar signos definitivos de vida pasada utilizando instrumentos demasiado grandes y complejos para enviarlos a el Planeta Rojo. «Debido a los emocionantes eventos de hoy, las primeras muestras prístinas de lugares cuidadosamente documentados en otro planeta son un paso más para ser devueltos a la Tierra», dijo Thomas Zurbuchen, administrador asociado de ciencia en la NASA. “La perseverancia es el primer paso para traer de vuelta la roca y el regolito de Marte. No sabemos qué nos dirán estas prístinas muestras de Marte. Pero lo que podrían decirnos es monumental, incluso que la vida pudo haber existido alguna vez más allá de la Tierra «. Con unas 28 millas (45 kilómetros) de ancho, el cráter Jezero se encuentra en el borde occidental de Isidis Planitia, una cuenca de impacto gigante justo al norte del ecuador marciano. Los científicos han determinado que hace 3.500 millones de años el cráter tenía su propio delta fluvial y estaba lleno de agua. El sistema de energía que proporciona electricidad y calor para Perseverance a través de su exploración del cráter Jezero es un generador termoeléctrico de radioisótopos de múltiples misiones, o MMRTG . El Departamento de Energía de los Estados Unidos (DOE) se lo proporcionó a la NASA a través de una asociación en curso para desarrollar sistemas de energía para aplicaciones espaciales civiles. Equipado con siete instrumentos científicos primarios, la mayor cantidad de cámaras jamás enviadas a Marte, y su exquisitamente complejo sistema de almacenamiento en caché de muestras, el primero de su tipo enviado al espacio, Perseverance recorrerá la región de Jezero en busca de restos fosilizados de la antigua vida marciana microscópica, tomando muestras a lo largo la manera.  “Perseverance es el geólogo robótico más sofisticado jamás creado, pero verificar que alguna vez existió vida microscópica conlleva una enorme carga de pruebas”, dijo Lori Glaze, directora de la División de Ciencias Planetarias de la NASA. «Si bien aprenderemos mucho con los excelentes instrumentos que tenemos a bordo del rover, es muy posible que se requieran laboratorios e instrumentos mucho más capaces aquí en la Tierra para decirnos si nuestras muestras contienen evidencia de que Marte alguna vez albergó vida». Allanando el camino para las misiones humanas «Aterrizar en Marte es siempre una tarea increíblemente difícil y estamos orgullosos de seguir construyendo sobre nuestro éxito pasado», dijo el director del JPL, Michael Watkins. “Pero, mientras Perseverance avanza en ese éxito, este rover también está abriendo su propio camino y desafiando nuevos desafíos en la misión de superficie. Construimos el rover no solo para aterrizar sino para encontrar y recolectar las mejores muestras científicas para regresar a la Tierra, y su sistema de muestreo increíblemente complejo y su autonomía no solo permiten esa misión, sino que preparan el escenario para futuras misiones robóticas y tripuladas «. El conjunto de sensores Mars Entry, Descent, and Landing Instrumentation 2 (MEDLI2) recopiló datos sobre la atmósfera de Marte durante la entrada, y el sistema de navegación relativa al terreno guió de manera autónoma la nave espacial durante el descenso final. Se espera que los datos de ambos ayuden a futuras misiones humanas a aterrizar en otros mundos de manera más segura y con mayores cargas útiles. En la superficie de Marte, los instrumentos científicos de Perseverance tendrán la oportunidad de brillar científicamente. Mastcam-Z es un par de cámaras científicas con zoom en el mástil o cabezal de detección remota de Perseverance que crea panoramas 3D en color de alta resolución del paisaje marciano. También ubicada en el mástil, la SuperCam utiliza un láser pulsado para estudiar la química de las rocas y los sedimentos y tiene su propio micrófono para ayudar a los científicos a comprender mejor las propiedades de las rocas, incluida su dureza. Ubicado en una torreta al final del brazo robótico del rover, el Instrumento planetario para litoquímica de rayos X (PIXL) y los instrumentos de escaneo de entornos habitables con Raman y luminiscencia para orgánicos y químicos (SHERLOC) trabajarán juntos para recopilar datos sobre Marte primer plano de geología. PIXL utilizará un haz de rayos X y un conjunto de sensores para profundizar en la química elemental de una roca. El espectrómetro y láser ultravioleta de SHERLOC, junto con su sensor topográfico de gran angular para operaciones e ingeniería (WATSON), estudiará las superficies de las rocas, trazando un mapa de la presencia de ciertos minerales y moléculas orgánicas, que son los componentes básicos del carbono para la vida en la Tierra. El chasis del rover también alberga tres instrumentos científicos. El Radar Imager for Mars ‘Subsurface Experiment (RIMFAX) es el primer

    READ MORE
  • La Armada de México crea un Sistema de Entrenamiento para Sistemas de Sonar

    La Armada de México crea un Sistema de Entrenamiento para Sistemas de Sonar0

    En días pasados, personal de la Armada de México a través de la Unidad de Investigación y Desarrollo Tecnológico (UNINDETEC) con sede en el Polígono Naval de Antón Lizardo, Veracruz, llevó a cabo la entrega de un Sistema de Entrenamiento para Sistemas de Sonar (SESONAR), desarrollado de forma integral por ingenieros mexicanos en seguimiento a la línea de investigación en acústica subacuática. El SESONAR es un parteaguas en el desarrollo de tecnología propia en esta Institución, puesto que su entrega da como resultado un sistema con la capacidad de instruir al personal naval en el manejo de las tecnologías de detección subacuático desarrolladas en la UNINDETEC, fortaleciendo de esta manera sus habilidades a bordo de las unidades de superficie. Cabe destacar que durante su diseño y construcción se tomaron como base las líneas de investigación desarrolladas durante el proyecto “Sistema de Vigilancia Marítima por Sonar” (SIVISO), concluido en 2018 y creado para otorgar a los buques de la Armada de México la función de detección de objetos por debajo de la superficie del mar, cubriendo con ello las tres áreas de responsabilidad que corresponden a esta Institución: el mar, el aire y la tierra. Es importante resaltar, que este proyecto fue posible con el trabajo de investigación científica, desarrollo tecnológico e innovación de personal especialista en las tareas de ciencias navales, mecánica y electrónica, con el que se obtuvieron cuatro productos que robustecen el Laboratorio de Acústica Subacuática de la UNINDETEC: •             Desarrollo y construcción de un sonar escala laboratorio, con el fin de emplear diferentes fuentes de ruido en un ambiente subacuático en tiempo real. •             Modulo de base de datos que permite crear y almacenar firmas acústicas sintéticos y guardar datos oceanográficos, como el sonido de los barcos y fauna marina. •             Plataforma de entrenamiento gráfico y auditivo, enlazada al sonar escala laboratorio y al módulo de base de datos para la simulación de ambientes marinos reales. •             Implementación de modelos matemáticos de propagación del sonido en el agua. Asimismo, gracias a sus capacidades de detección, este sistema se perfila como un elemento fundamental para el entrenamiento de las tripulaciones de los buques de la Armada de México que realizan operaciones de mantenimiento del Estado de Derecho en la mar. Puedes ver el video que hicimos sobre el tema

    READ MORE
  • El desarrollo del F-5G/F-20A

    El desarrollo del F-5G/F-20A0

    En enero de 1980, Northrop Aircraft aprobó un proyecto para desarrollar un nuevo caza ligero de ataque, que tendría un rendimiento igual  o superior al de cualquier avión de combate de primera línea en cualquier parte del mundo, de acuerdo una especificación emitida por el gobierno de los Estados Unidos para un nuevo caza de exportación conocido en un principio como FX. Fiel a su tradición, para su desarrollo se tomo como base, un avión ya existente, en este caso el F-5E, que en la década de los setenta había sido el avión ganador de la competencia para construir el Caza Internacional Avanzado, siendo  comercializado dentro del Programa de Asistencia Militar (Military Assistance Program MAP) y vendido con ventajas comerciales bajo el Programa de Ventas Militares al Extranjero (Foreign Military Sales FMS). F-5G fue la designación dada por Northrop a esta nueva versión del ya legendario F-5 que se enfocaría al mercado de exportación, principalmente por su bajo costo. Northrop recibió la aprobación para el desarrollo del F-5G del Departamento de Estado, con la reserva por parte del gobierno de no comprarlo si no resultaba adecuado a sus necesidades, aclarando que no habría ninguna ayuda financiera del gobierno para un avión como el F-5G. La empresa sin embargo decidió continuar con el programa, asumiendo como en el pasado, que el éxito del F-5E aseguraría un mercado lucrativo para esta nueva versión, absorbiendo esta el costo de la pre-producción del avión. En el diseño del F-5G, el par de turbinas J-85 del F-5E fueron reemplazadas por un turboreactor General Eléctric F-404, ofreciendo un empuje de postcombustión de 16,000 libras. El F-404 ha sido diseñado como el sucesor del motor J-79. Este tenía el mismo empuje que el J-79, pero ponderado aproximadamente a  la mitad tanto y tenía 7,700 partes móviles menos. El motor F-404-GE-100 era sumamente fiable y era fácil de mantener ya que cuenta con 6 módulos completamente intercambiables. Contaba además con un sistema de prendido automático en el aire. Aunque el motor F-404 es más pesado que el par de turbinas J-85 que reemplazó, el peso vacío del F-5G era sólo un 17 por ciento mayor que el del F-5E, llegando a alcanzar una velocidad máxima superior a Mach 2. La velocidad de trepada se incremento en un 567 por ciento en comparación con el F-5E, con una aceleración de subida inicial de 54,000 pies por el minuto y un techo de servicio de más de 53,000 pies. La velocidad supersónica se incremento un 47 por ciento más que la del F-5E. La capacidad de los tanques interiores de  combustible se mantuvo inalterada, pero el más bajo consumo de combustible específico del motor F-404 dio al nuevo avión, un aumento del diez por ciento en su radio de combate. El ala del F-5G era parecida a la usada por el F-5E. Sin embargo, se agregaron nuevas extensiones de borde alar modificados como consecuencia del nuevo diseño de los conductos del motor de admisión. Las nuevas extensiones de borde alar LEX (Leading Edge Extension)  aumentaron el coeficiente de ascenso máximo de el ala hasta un 12 % por solo un aumento del área del ala de sólo el 1.6 %, que otorgaba el 30 por ciento de la sustentación.  Además cuenta con grandes estabilizadores horizontales para mejor maniobrabilidad. Al mismo tiempo se incluyeron flaps de maniobra delanteros para un mejor desempeño en combate ya que la mejor aerodinámica permite un mejor viraje, una mejor aceleración y reduce la resistencia, con cambios automáticos que dan una posición optima para cualquier velocidad y/o ángulo de ataque. La nariz se aplanó ligeramente en su punta para realzar la estabilidad en los ángulos altos de ataque. Esto hizo que la nariz del avión se pareciera a la de un tiburón, de ahí el nombre de Tigershark. El nuevo contorno de la nariz mejoró la estabilidad direccional en los ángulos de ataque de hasta 40 grados y redujo la tendencia del avión para volar invertido en baja velocidad. La burbuja de la cabina del piloto era un 44 por ciento más grande en su área y ofrecía una vista completa mejorada comparada a la del F-5E. La instrumentación de la cabina del piloto era de las más avanzadas en su día, siendo diseñada por un equipo unido de ingenieros, ingenieros de factores humanos, y pilotos de combate. Tenía un HUD con gran angular con un vector inicial y un par de despliegues multi-función monocromáticos. El trabajo del piloto se minimizó por el uso de botones de la entrada en la columna de la palanca de  mando, el mando de sensores y el panel de armas. Las selecciones del interruptor fueron minimizadas.  Por ejemplo, el seleccionador de armas de tres posiciones  se preparo adelante para las armas de BVR, poniendo atrás del piloto los de proyectiles y más atrás las demás armas de tiro. Aunque la aviónica inicial del F-5G era esencialmente igual a la de la última versión del F-5E, incluido el radar Emerson, fue planeado ofrecer numerosas opciones en aviónica para que los usuarios pudieran  contar con un Tigershark adecuado a sus propios requerimientos individuales y presupuesto. El Tigershark estaba provisto con un Radar denominado Multi-modo Coherente (MCR) qué puede cumplir tres funciones diferentes y puede apuntar con precisión objetivos que se están moviendo o en estacionario. Otra electrónica incluye un Despliegue Digital y Juego del Mando, una Computadora de Misión, el Sistema de Navegación Inercial por láser y un sistema de despliegue de alerta. El acelerador estaba montado en el bastón de mando que significó que el piloto podría operar el avión en combate sin tener que tener sus manos fuera del bastón  de mando. Por todas estas características la USAF comenzó a mostrar interés en el proyecto, por lo que ordenó cuatro ejemplares del F-5G para su  evaluación. Los números de serie fueron 82-0062/0065. El primer F-5G (82-0062 matricula civil N4416T) realizó su primer vuelo en la base Edwards, el 30 de agosto de 1982, a los mandos de Russ Scott.

    READ MORE
  • Flightlab para probar las tecnologías del futuro

    Flightlab para probar las tecnologías del futuro0

    Airbus Helicopters ha comenzado las pruebas de vuelo a bordo de su Flightlab, un laboratorio de vuelo independiente de la plataforma, dedicado exclusivamente a la evolución de nuevas tecnologías. El Flightlab de Airbus Helicopters proporciona un banco de pruebas ágil y eficiente para ensayar rápidamente tecnologías que podrían equipar más adelante la gama de helicópteros actuales de Airbus, e incluso otras más disruptivas para futuras aeronaves de ala fija o plataformas (e)VTOL. Airbus Helicopters tiene la intención de seguir probando las tecnologías de propulsión híbrida y eléctrica con su demostrador Flightlab, así como explorar la autonomía, y otras tecnologías destinadas a reducir los niveles de ruido de los helicópteros o mejorar el mantenimiento y la seguridad de los vuelos. «Invertir en el futuro sigue siendo esencial, incluso en tiempos de crisis, sobre todo cuando esas innovaciones aportan un valor añadido a nuestros clientes al apuntar a un aumento de la seguridad, una reducción de la carga de trabajo de los pilotos y una reducción de los niveles de ruido», dijo Bruno Even, CEO de Airbus Helicopters. «Contar con una plataforma dedicada a probar estas nuevas tecnologías hace que el futuro del vuelo se acerque y es un claro reflejo de nuestras prioridades en Airbus Helicopters», añadió. Las pruebas de vuelo se iniciaron el pasado mes de abril, cuando el demostrador se utilizó para medir los niveles de sonido de los helicópteros en zonas urbanas y para estudiar, en particular, cómo los edificios pueden afectar a la percepción de las personas. Los primeros resultados muestran que los edificios desempeñan un importante papel a la hora de enmascarar o amplificar los niveles sonoros y estos estudios serán fundamentales cuando llegue el momento de modelar el sonido y establecer la normativa, especialmente para las iniciativas de Urban Air Mobility (UAM). En diciembre se realizaron pruebas para evaluar el Rotor Strike Alerting System (RSAS), destinado a alertar a las tripulaciones sobre el riesgo inminente de colisión con las hélices principales y de cola.Las pruebas de este año incluirán una solución de detección de imágenes con cámaras para permitir la navegación a baja altura, la viabilidad de un Sistema de Monitorización de Salud y Uso (HUMS) específico para helicópteros ligeros, y un Sistema de Respaldo del Motor, que proporcionará energía eléctrica de emergencia en caso de fallo de la turbina. Las pruebas en el Flightlab continuarán en 2022 para evaluar un nuevo diseño ergonómico de controles de vuelo intuitivos para el piloto, destinado a reducir aún más la carga de trabajo del piloto, que podría aplicarse a los helicópteros tradicionales y a otras fórmulas VTOL como UAM. Flightlab es una iniciativa de todo Airbus, que refleja el enfoque de innovación de la compañía centrado en ofrecer valor a los clientes. Airbus cuenta con varios Flightlabs muy conocidos, como el A340 MSN1, utilizado para evaluar la viabilidad de la introducción de tecnología de alas de flujo laminar en un gran avión de pasajeros, y el A350 Airspace Explorer, utilizado para evaluar las tecnologías de cabina conectada a bordo.

    READ MORE
  • México asume el liderazgo regional en Ciberdefensa

    México asume el liderazgo regional en Ciberdefensa0

    En el marco de la celebración de la creación de los 200 años de la Armada de México, la Secretaría de Marina recibió de Brasil la Secretaría Pro-Tempore del Foro Iberoamericano de Ciberdefensa en su Cuarta Edición, por el periodo 2021-2022. Citado evento se llevó a cabo en modalidad virtual y fue presidido por el Almirante Luis Orozco Inclán, Jefe del Estado Mayor General de la Armada, en representación del Almirante José Rafael Ojeda Durán, Secretario de Marina y Alto Mando de la Armada de México, quien estuvo acompañado por el General del Ejército César Augusto Nardi de Souza, Jefe de Asuntos Estratégicos del Ministerio de Defensa de Brasil, así como Jefes de Estados Mayores de las Fuerzas Armadas y representantes de la Ciberdefensa de los países iberoamericanos participantes: Argentina, Brasil, Chile, Colombia, España, México, Paraguay, Perú, Portugal y Uruguay, así como Ecuador en calidad de observador. El objetivo del Foro Iberoamericano de Ciberdefensa es promover la cooperación regional, para afrontar juntos los retos que se presentan en este entorno operacional llamado “Ciberespacio”, a manera de contrarrestar las amenazas que atentan contra la seguridad nacional de dichas naciones; esto a través de la cooperación y colaboración mutua, mediante el intercambio de información y experiencias, así como el desarrollo de capacidades humanas, a través de ofertas educativas y ciberejercicios. En su intervención, el Almirante Orozco Inclán indicó que “el día de hoy asumimos el firme compromiso de recibir la Secretaría Pro-Tempore de este Foro Iberoamericano, con la ferviente intención y buena voluntad de promover la cooperación regional en materia de Ciberdefensa”, donde “estamos seguros que habremos de promover la cooperación regional entre nuestras Fuerzas Armadas, en favor de la Seguridad Nacional en el Ciberespacio, para beneficio de nuestros pueblos y de nuestra región”, agregó. Asimismo, el Secretario Pro-Tempore saliente, Comandante Conjunto de Ciberdefensa de Brasil, General de División Guido Amin Naves, encomendó al Jefe de la Unidad de Ciberseguridad de la Armada de México, Capitán de Navío CG. DEM. Miguel Ángel Durán Barradas, Secretario Pro-tempore entrante, generar una sinergia proactiva para el desarrollo de todas las actividades programadas durante el periodo 2021-2022.

    READ MORE
  • Primer vuelo del avión MC-21-310 con motores rusos PD-14

    Primer vuelo del avión MC-21-310 con motores rusos PD-141

    Este 15 de diciembre de 2020, en el aeródromo de la Planta de Aviación de Irkutsk,  tuvo lugar el primer vuelo del avión MC-21-310, equipado con los nuevos motores rusos PD-14. La marca MC-21 engloba una gama de aviones comerciales de nueva generación diseñados para vuelos de corta y media distancia. Incluye el modelo MC-21-200 (con capacidad entre 130 y 165 pasajeros) y el MC-21-300 (160-220 pasajeros). La versión equipada con los motores PD-14 se denomina MC-21-310.  La duración del vuelo fue de 1 hora 25 minutos. El avión fue pilotado por una tripulación formada por los pilotos de prueba Vasily Sevastyanov, Andrey Voropaev y el ingeniero de pruebas Alexander Soloviev. La tarea de vuelo consistió en comprobar los modos de funcionamiento de la central eléctrica, la estabilidad y control de la aeronave, así como el funcionamiento de sus sistemas. “Este vuelo es el resultado de la unificación de dos programas importantes de la industria de la aviación civil en Rusia: el avión MS-21 y el motor PD-14. Gracias a los esfuerzos de científicos, diseñadores, ingenieros, trabajadores, se está creando un avión de pasajeros de nueva generación, que devuelve a Rusia a la liga superior de la aviación mundial”, dijo Sergei Chemezov, director general de Rostec State Corporation. El pasado 6 de noviembre, la aeronave fue transferida del taller de ensamblaje final a la división de pruebas de vuelo de la Planta de Aviación de Irkutsk, una sucursal de Irkut Corporation PJSC.  En preparación para el primer vuelo, los especialistas verificarán los sistemas de la aeronave, probarán el lanzamiento en tierra de la planta de energía, probarán la aeronave y los motores mientras se mueven por el aeródromo a varias velocidades. “Solo unos pocos países en el mundo son capaces de crear equipos de aviación de este nivel. Las próximas pruebas del MC-21 con motores domésticos son un acontecimiento histórico para la industria, una clara confirmación de que la industria de la aviación civil nacional tiene futuro”, asegura Anatoly Serdyukov, director industrial del grupo de aviación de Rostec. Imágenes Rostec Corporation

    READ MORE

Latest Posts

Top Authors