• La Agencia Espacial Mexicana colaborará en tecnologías de extracción de recursos lunares

    La Agencia Espacial Mexicana colaborará en tecnologías de extracción de recursos lunares0

    Airbus ha firmado un memorando de entendimiento con la Agencia Espacial Mexicana (AEM) y la empresa mexicana Dereum Labs para colaborar en las tecnologías necesarias para la extracción de recursos lunares. Esto conducirá a la creación de un nuevo programa mexicano de Utilización de Recursos In-Situ (ISRU) para la extracción lunar y ayudará a desarrollar el ecosistema industrial necesario para esta tecnología en el país. En el marco de este nuevo programa está previsto un concepto de demostración en tierra. En él se desarrollará un proceso integral desde la identificación y captura del regolito hasta la extracción de los recursos. También se invitará a universidades mexicanas especializadas a contribuir al proyecto. Esta demostración estratégica desarrollará la utilización de recursos in situ (ISRU) y las capacidades mexicanas, allanando el camino para futuros desarrollos deexploración espacial en México y la cooperación internacional con el sector privado. Las tecnologías innovadoras de México contribuirán a una presencia sostenible de la humanidad en la Luna. Bajo la dirección de la AEM, las tecnologías de Dereum Labs serán clave para los sistemas ISRU de aprovechamiento de los recursos locales de la Luna, como el regolito, para extraer oxígeno y metal, o para extraer agua. Estas tecnologías serán cruciales para mantener la vida en la Luna y proporcionar los recursos necesarios para seguir explorando. Si se demuestran estas tecnologías, no será necesario enviar desde la Tierra recursos como el oxígeno, el agua y el combustible. ¡El viaje hacia una economía cis-lunar sostenible ha comenzado con tecnología mexicana a bordo! “Este acuerdo representa el primer paso de una fructífera colaboración con México en actividades espaciales”, dijo Víctor de la Vela, Responsable de Airbus en América Latina y el Caribe. “Ser capaz de extraer y procesar los recursos lunares es esencial para mantener la vida a largo plazo en la Luna. Esta colaboración reúne a los socios adecuados con las últimas tecnologías y capacidades para un horizonte más claro en la exploración lunar.” “En Dereum Labs visualizamos y trabajamos por una economía interplanetaria; en unos años, las industrias que hoy no están relacionadas con el espacio estarán haciendo negocios en la Luna, Marte y más allá”, dijo Carlos Mariscal, Director de Dereum Labs. “Con este acuerdo, la Agencia Espacial Mexicana, Airbus Defence and Space y Dereum Labs están dando juntos un enorme paso hacia ese futuro; hoy México está contribuyendo a la presencia humana alargo plazo en el espacio. Estamos absolutamente encantados”. “Un gran objetivo de la Agencia Espacial Mexicana ha sido impulsar el talento y el emprendimiento entre nuestras nuevas generaciones, así como a la industria espacial en el país, por lo que mucho nos congratulamos de esta alianza”, afirmó al respecto el Director General de la AEM, Dr. Salvador Landeros Ayala. Dereum Labs está desarrollando innovadores enjambres de róvers modulares de bajo coste para demostrar la movilidad y comunicabilidad de los vehículos robóticos en la Luna para la recogida de datos y la cartografía de los recursos lunares. Airbus se está centrando en los bloques clave para un ecosistema lunar: está desarrollando la tecnología para llevar vehículos y carga a la superficie de la Luna y luego para explorar y extraer recursos. También está desarrollando el sistema ROXY para extraer oxígeno y metales del regolito lunar, ya que son elementos fundamentales para una presencia lunar sostenible. Airbus Defence and Space y Dereum Labs comparten la misma visión de que las empresas terrestres líderes en sectores clave como la energía, las infraestructuras y la minería también deberían formar parte de los programas de exploración de la Luna.

    READ MORE
  • El satélite mexicano NanoConnect-2, esta en orbita

    El satélite mexicano NanoConnect-2, esta en orbita0

    El laboratorio de instrumentación espacial (LINX) del Instituto de Ciencias Nucleares (ICN) de la UNAM realizo con éxito la puesta en órbita del microsatélite NanoConnect-2, desarrollado ese laboratorio mismo que fue colocado a 504 kilómetros de la superficie terrestre por la Agencia India de Investigación Espacial (ISRO). Gustavo Adolfo Medina Tanco, líder del proyecto y director del Laboratorio de Instrumentación Espacial LINX, del ICN, detalló que se trata de una segunda parte en una serie de nanosatélites en los que trabajan los universitarios desde el año 2017. Este proyecto de satélites fue llamado NanoConnect, ya que ofrecen herramientas de tecnología que permitirán posicionar a México como un actor en el sector espacial en el desarrollo de instrumentos y aplicaciones para órbitas bajas. Los equipos fueron diseñados y fabricados por LINX, en coordinación con el gobierno de Hidalgo. El primero de esta serie fue NanoConnet-1, el cual realizó en noviembre de 2017 un vuelo suborbital utilizando la plataforma estratosférica ATON de LINX, operada desde Pachuca. El lanzamiento se llevó a cabo con el cohete PSLV-C51 desde la base del Dhawan Space Center, SHAR, Sriharikota en India. El PSLV usará para este lanzamiento una configuración con booster de estado sólido adicionados al motor principal. Llevará como satélite principal al brasileño Amazonioa-1, y otros 18 satélites secundarios entre los que se cuenta NanoConnect-2. El lanzamiento se efectuó el domingo 28 de febrero de 2021. La separación del NanoConnect-2 tuvo lugar el domingo 28 de febrero en una órbita circular polar a aproximadamente 504 km de altura. El objetivo de NanoConnect-2 es probar que cada instrumento que conforma el equipo funciona correctamente en el espacio; es decir, las computadoras de vuelo; los sistemas de monitoreo, potencia, telecomunicaciones y los que están en tierra; así como las estructuras mecánicas. El NanoConnect-2 comenzó a trabajar inmediatamente y en tres o seis meses completara la misión de validación de equipos, por lo que se espera continúe su labor algunos años hasta que sea atraído a la superficie terrestre. Entre los patrocinadores de este esfuerzo debe destacarse en forma especial al empresario José Vera y a su empresa Liber Salus, y al ya fallecido empresario Francisco Valle y su empresa Pastes Kiko. Estas se suman en un ecosistema de diversas empresas nacionales y extranjeras que apoyan a LINX en sus proyectos: AG Electrónica, Biomédica de Referencia, DOW, ENGIE México, EBIME Equipos de Biomedicina de México, Glenair, Globalstar, HIESC, InReach, Liber Salus, MicroLink, nCAP Telecommunications, Publicidad Virtual, Rohde & Shwarz, PRAXIS, SAMTEC, Sol21CyT, Space AI, Spacenet, Steren Electrónica, Weller, Wurth Electronik El Instituto Nacional de Investigaciones Espaciales (INPE) de Brasil anunció el exitoso lanzamiento del satélite Amazonia 1 (AMZ 1), este es el primer satélite de observación de la Tierra completamente diseñado, integrado, probado y operado por Brasil, y proporcionará imágenes para el monitoreo ambiental y agrícola en todo el territorio brasileño con una alta tasa de retorno. También servirá para monitorear la región costera, reservorios de agua y desastres ambientales, entre otras aplicaciones. Los datos estarán disponibles tanto para la comunidad científica como para las agencias gubernamentales y para los usuarios interesados ​​en una mejor comprensión del medio terrestre. Este satélite también es el primero construido a partir de la Plataforma Multimisión (PMM), una estructura innovadora desarrollada por el INPE, capaz de adaptarse a los propósitos de diferentes misiones y, así, reducir los costos de los proyectos espaciales. Los invitamos a ver este video sobre el tema

    READ MORE
  • Airbus publica sus resultados en el ejercicio 2020

    Airbus publica sus resultados en el ejercicio 20200

    Airbus ha anunciado sus resultados financieros consolidados del ejercicio 2020 y ha comunicado su previsión para 2021. “Los resultados de 2020 demuestran la resiliencia de Airbus ante la crisis más grave que ha golpeado al sector aeroespacial. Me gustaría dar las gracias a nuestros equipos por los importantes logros alcanzados en 2020 y reconocer el firme apoyo de nuestras actividades de Helicopters y Defence and Space. También querría agradecer a nuestros clientes, proveedores y socios su lealtad hacia Airbus”, afirmó Guillaume Faury, Chief Executive Officer de Airbus. “El sector se seguirá enfrentando a un alto nivel de incertidumbre en 2021, ya que la pandemia continúa teniendo un impacto en nuestras vidas, economías y sociedades. Hemos emitido una previsión para proporcionar un cierto grado de visibilidad en un entorno volátil. A más largo plazo, aspiramos a liderar el desarrollo de un sector aeroespacial sostenible a nivel mundial”, añadió. Los pedidos netos de aviones comerciales ascendieron a 268 (2019: 768 aviones) con una cartera de pedidos que incluye 7.184 aviones comerciales a 31 de diciembre de 2020. Airbus Helicopters registró 268 pedidos netos (2019: 310 unidades), que incluyen 31 NH90 para el Ejército alemán en el cuarto trimestre y 11 H160. Los pedidos recibidos por Airbus Defence and Space se incrementaron un 39% en comparación con el año anterior y alcanzaron los 11.900 millones de euros con una ratio neta de pedidos a ingresos superior a uno debido, especialmente, a una serie de importantes contratos en Military Aircraft. Entre ellos se encuentra un contrato firmado en noviembre para suministrar 38 nuevos Eurofighter a la Fuerza Aérea alemana. El valor de los pedidos recibidos consolidados se redujo hasta los 33.300 millones de y la cartera de pedidos consolidada ascendía a 373.000 millones de euros a 31 de diciembre de 2020. La reducción del valor de la cartera de pedidos de aviones comerciales refleja unas entregas superiores a los pedidos recibidos, la debilidad del dólar y la evaluación de la recuperabilidad de la cartera de pedidos. Los ingresos consolidados se redujeron hasta los 49.900 millones de euros (2019: 70.500 millones de euros) debido al difícil entorno de mercado que afecta al negocio de los aviones comerciales y que ha supuesto un 34% menos de entregas respecto al año anterior. Se entregaron un total de 566 aviones comerciales (2019: 863 aviones) que comprendieron 38 aviones A220, 446 aviones de la familia A320, 19 aviones A330, 59 aviones A350 y 4 aviones A380. Durante el cuarto trimestre de 2020 se entregaron un total de 225 aviones comerciales, 89 de ellos en diciembre. En 2020, Airbus Helicopters entregó 300 unidades (2019: 332 unidades) incrementando sus ingresos alrededor de un 4% gracias a un mix de productos favorable y al crecimiento de los servicios. Los ingresos de Airbus Defence and Space se redujeron en torno a un 4%, reflejando principalmente un menor volumen y el impacto del covid-19 en el escalonamiento de la actividad, especialmente en Space Systems.

    READ MORE
  • El rover Mars Perseverance de la NASA aterriza en Marte

    El rover Mars Perseverance de la NASA aterriza en Marte0

    El rover más grande y avanzado que la NASA ha enviado a otro mundo aterrizó en Marte el jueves, después de un viaje de 203 días que atravesó 293 millones de millas (472 millones de kilómetros). La confirmación del aterrizaje exitoso se anunció en el control de la misión en el Laboratorio de Propulsión a Chorro de la NASA en el sur de California a las 3:55 pm EST (12:55 pm PST). Equipada con tecnología innovadora, la misión Mars 2020 se lanzó el 30 de julio de 2020 desde la Estación de la Fuerza Espacial de Cabo Cañaveral en Florida. La misión del rover Perseverance marca un ambicioso primer paso en el esfuerzo por recolectar muestras de Marte y devolverlas a la Tierra.  Aproximadamente del tamaño de un automóvil, el geólogo y astrobiólogo robótico de 1.026 kilogramos (2.263 libras) se someterá a varias semanas de pruebas antes de comenzar su investigación científica de dos años del cráter Jezero de Marte. Si bien el rover investigará la roca y el sedimento del antiguo lecho del lago y delta del río Jezero para caracterizar la geología y el clima pasado de la región, una parte fundamental de su misión es la astrobiología, incluida la búsqueda de signos de vida microbiana antigua. Con ese fin, la campaña Mars Sample Return, planificada por la NASA y la ESA (Agencia Espacial Europea), permitirá a los científicos en la Tierra estudiar muestras recolectadas por Perseverance para buscar signos definitivos de vida pasada utilizando instrumentos demasiado grandes y complejos para enviarlos a el Planeta Rojo. “Debido a los emocionantes eventos de hoy, las primeras muestras prístinas de lugares cuidadosamente documentados en otro planeta son un paso más para ser devueltos a la Tierra”, dijo Thomas Zurbuchen, administrador asociado de ciencia en la NASA. “La perseverancia es el primer paso para traer de vuelta la roca y el regolito de Marte. No sabemos qué nos dirán estas prístinas muestras de Marte. Pero lo que podrían decirnos es monumental, incluso que la vida pudo haber existido alguna vez más allá de la Tierra “. Con unas 28 millas (45 kilómetros) de ancho, el cráter Jezero se encuentra en el borde occidental de Isidis Planitia, una cuenca de impacto gigante justo al norte del ecuador marciano. Los científicos han determinado que hace 3.500 millones de años el cráter tenía su propio delta fluvial y estaba lleno de agua. El sistema de energía que proporciona electricidad y calor para Perseverance a través de su exploración del cráter Jezero es un generador termoeléctrico de radioisótopos de múltiples misiones, o MMRTG . El Departamento de Energía de los Estados Unidos (DOE) se lo proporcionó a la NASA a través de una asociación en curso para desarrollar sistemas de energía para aplicaciones espaciales civiles. Equipado con siete instrumentos científicos primarios, la mayor cantidad de cámaras jamás enviadas a Marte, y su exquisitamente complejo sistema de almacenamiento en caché de muestras, el primero de su tipo enviado al espacio, Perseverance recorrerá la región de Jezero en busca de restos fosilizados de la antigua vida marciana microscópica, tomando muestras a lo largo la manera.  “Perseverance es el geólogo robótico más sofisticado jamás creado, pero verificar que alguna vez existió vida microscópica conlleva una enorme carga de pruebas”, dijo Lori Glaze, directora de la División de Ciencias Planetarias de la NASA. “Si bien aprenderemos mucho con los excelentes instrumentos que tenemos a bordo del rover, es muy posible que se requieran laboratorios e instrumentos mucho más capaces aquí en la Tierra para decirnos si nuestras muestras contienen evidencia de que Marte alguna vez albergó vida”. Allanando el camino para las misiones humanas “Aterrizar en Marte es siempre una tarea increíblemente difícil y estamos orgullosos de seguir construyendo sobre nuestro éxito pasado”, dijo el director del JPL, Michael Watkins. “Pero, mientras Perseverance avanza en ese éxito, este rover también está abriendo su propio camino y desafiando nuevos desafíos en la misión de superficie. Construimos el rover no solo para aterrizar sino para encontrar y recolectar las mejores muestras científicas para regresar a la Tierra, y su sistema de muestreo increíblemente complejo y su autonomía no solo permiten esa misión, sino que preparan el escenario para futuras misiones robóticas y tripuladas “. El conjunto de sensores Mars Entry, Descent, and Landing Instrumentation 2 (MEDLI2) recopiló datos sobre la atmósfera de Marte durante la entrada, y el sistema de navegación relativa al terreno guió de manera autónoma la nave espacial durante el descenso final. Se espera que los datos de ambos ayuden a futuras misiones humanas a aterrizar en otros mundos de manera más segura y con mayores cargas útiles. En la superficie de Marte, los instrumentos científicos de Perseverance tendrán la oportunidad de brillar científicamente. Mastcam-Z es un par de cámaras científicas con zoom en el mástil o cabezal de detección remota de Perseverance que crea panoramas 3D en color de alta resolución del paisaje marciano. También ubicada en el mástil, la SuperCam utiliza un láser pulsado para estudiar la química de las rocas y los sedimentos y tiene su propio micrófono para ayudar a los científicos a comprender mejor las propiedades de las rocas, incluida su dureza. Ubicado en una torreta al final del brazo robótico del rover, el Instrumento planetario para litoquímica de rayos X (PIXL) y los instrumentos de escaneo de entornos habitables con Raman y luminiscencia para orgánicos y químicos (SHERLOC) trabajarán juntos para recopilar datos sobre Marte primer plano de geología. PIXL utilizará un haz de rayos X y un conjunto de sensores para profundizar en la química elemental de una roca. El espectrómetro y láser ultravioleta de SHERLOC, junto con su sensor topográfico de gran angular para operaciones e ingeniería (WATSON), estudiará las superficies de las rocas, trazando un mapa de la presencia de ciertos minerales y moléculas orgánicas, que son los componentes básicos del carbono para la vida en la Tierra. El chasis del rover también alberga tres instrumentos científicos. El Radar Imager for Mars ‘Subsurface Experiment (RIMFAX) es el primer

    READ MORE
  • 35 años del primer astronauta mexicano

    35 años del primer astronauta mexicano0

    Hace 35 años se llevó a cabo el primer vuelo de un astronauta mexicano, el Doctor Rodolfo Neri Vela fue al espacio en la Misión STS-61B del Transbordador Espacial Atlantis de la NASA que inició su viaje fuera de nuestra atmósfera la noche del 26 de noviembre de 1985, desde el Centro espacial John F. Kennedy, ubicado en Florida. Egresado de la Universidad Nacional Autónoma de México de la licenciatura en ingeniería mecánica y electrónica; estudió el programa de maestría en ciencias, especializándose en sistemas de telecomunicaciones, en la Universidad de Essex, Inglaterra; y recibió un doctorado en radiación electromagnética de la Universidad de Birmingham, Inglaterra, donde también realizó una investigación postdoctoral en guías de ondas., el doctor Rodolfo Neri Vela, fue el primer y único latinoamericano en ser parte de una de las misiones del trasbordador espacial para NASA. Neri Vela entrenó medio año en el Centro Espacial Lyndon B. Johnson en Houston, Texas, para participar en la Misión, ahí compartió instalaciones y entrenamiento con otro par de mexicanos: Ricardo Peralta y Fabi y Francisco Javier Mendieta Jiménez, quienes eran los sustitutos de Vela en caso de que éste no pudiera seguir con la misión. Hasta ese momento  el Dr. Neri había  realizado investigaciones y planificación de sistemas sobre antenas y sistemas de comunicaciones por satélite en el Instituto de Investigaciones Eléctricas, México. También dirigió el departamento de Planificación e Ingeniería de la Programa Satelital Morelos de la Secretaría de Comunicaciones y Transportes de México. Con la puesta en órbita de los primeros satélites mexicanos la  NASA acordó con el gobierno de México llevar a un astronauta mexicano durante el despliegue del segundo satélite. Se lanzó una convocatoria a través de la Secretaría de Comunicaciones y Transportes dirigido a personas con posgrados y experiencia en docencia. Los estudios de ingeniería mecánica-eléctrica y posgrados en sistemas de telecomunicación y radiación electromagnética ayudaron a Neri Vela a ganar esta oportunidad, puesto que la carga de la misión eran satélites, su especialidad. Como la NASA solo entrenaba ciudadanos estadounidenses reclutados con anticipación y estos tenían una diversidad de actividades que podían desempeñar hasta que se les asignaba una misión, la NASA diseñó un programa intensivo de entrenamiento ya que, cuando mucho, había un año para prepararse e ir al espacio. El entrenamiento tocaba las partes fundamentales para integrarse con el  resto del equipo y ayudar en algunas actividades con los demás tripulantes. Desde que se inició la operación para la puesta en órbita de los satélites Morelos, en 1985, el Dr, Neri participó en las pláticas y detalles para desplegarlos. Durante su viaje el Dr, Neri grabó sus experiencias en casetes con todos los detalles del día a día, además de realizar y controlar experimentos diseñados por mexicanos, como el cultivo de amaranto y frijol, así como de bacterias. Antes de despegar el Dr Neri insistió en llevar tortillas. Desde entonces se comenzaron a incluir en las misiones gracias a su valor nutrimental y a que no hacen migas, lo cual representa seguridad para las tripulaciones. Rodolfo Neri Vela realizó una serie de experimentos en su vuelo que fueron los siguientes: Efectos del entorno espacial en la reproducción y el crecimiento de bacterias (REPGROW) Los cultivos de bacterias de la cepa B de Escherichia coli se mezclarán en órbita con diferentes bacteriófagos que atacan la Escherichia coli y posteriormente, se observan para detectar posibles cambios y se fotografían según sea necesario. Transporte de nutrientes en un ambiente ingrávido (TRANSPORTE): diez especímenes de plantas en contenedores que permitan que un trazador radiactivo sea liberado en órbita para ser absorbido por plantas. A intervalos seleccionados, cada planta se seccionará y los segmentos se conservarán para después del vuelo realizar un análisis para determinar la tasa y el grado de absorción. Electropuntura y Biocibernética en el Espacio (ELECTROPUNCTURA) – El objetivo del experimento era validar las teorías de la electro punción. Estas teorías afirman que el desequilibrio en el comportamiento de órganos humanos se puede controlar y estimular utilizando corriente continua eléctrica en zonas específicas. Este experimento se realizó midiendo la conductancia de la electricidad en una zona predeterminada. Si se detecta un desequilibrio, se aplicarán ejercicios o estímulos durante un período determinado hasta que el valor del  conductancia cae dentro del rango normal. Efectos de la ingravidez y la luz sobre la germinación de semillas (SEMILLAS) – Muestras de semillas de amaranto, las lentejas y el trigo se plantarán en órbita durante el Día de vuelo 2 en dos contenedores idénticos. Posteriormente, uno recipiente estará expuesto a la iluminación y el otro a la oscuridad constante. Fotografías del resultado los brotes se tomarán cada 24 horas. Un día antes del desembarque, los brotes serán sometidos a proceso de detención metabólica para su posterior examen histológico en la Tierra para determinar la presencia y localización de gránulos de almidón. Durante toda la misión  el Dr. Neri realizo estudios fotográficos de México, poniendo énfasis  en fotografiar la Ciudad de México posterior al terremoto de septiembre de 1985.  La misión tenía como objetivo poner tres satélites en órbita: AUSSATT II, SATCOM K-2 y el Morelos II, que era el segundo satélite de comunicaciones mexicano, una parte importante de la misión se destinó a construir las primeras grandes estructuras en el espacio. En ambos experimentos, los miembros de la tripulación ensamblaron componentes pequeños para formar estructuras más grandes preparando el camino para construir la Estación Espacial Internacional con la realización de tareas de construcción en el espacio, explorando técnicas de construcción alternativas y practicar escenarios de mantenimiento de la Estación Espacial. La tripulación de la misión era Brewster H. Shaw, Jr, comandante; Bryan D. O’Connor, doctor de misiones; Mary L. Cleave, especialista de misión; Sherwood C. Spring, especialista de misión; Jerry L. Ross, especialista de misión; y Charles D. Walker, especialista de carga. En su viaje al espacio Rodolfo Neri Vela “orbitó la Tierra 109 veces, ya que la misión duro 6 días y 21 horas,  regresando a la tierra el 3 de diciembre de 1985. Después

    READ MORE
  • En el 2031 las primeras muestras de Marte a la Tierra

    En el 2031 las primeras muestras de Marte a la Tierra0

    Airbus ha sido elegido por la Agencia Espacial Europea (ESA) como contratista principal del Orbitador de Retorno a la Tierra (Earth Return Orbiter, ERO) de la misión Retorno de Muestras de Marte (Mars Sample Return, MSR), elprimer vehículo espacial que traerá muestras de Marte a la Tierra. El programa MSR es una campaña conjunta de la ESA y la NASA que representa un paso más en la exploración de Marte. ERO y el Róver para la Recogida de muestras (Sample Fetch Rover, SFR) son los dos principales elementos europeos de MSR y ambos van a ser diseñados y construidos por Airbus. Un brazo manipulador llamado Brazo de Transferencia de Muestras STASample Transfer Arm) que llevará las muestras desde el SFR al vehículo de ascenso (MAVMars Ascent Vehicle), es la tercera contribución europea al programa MSR. El valor del contrato de ERO es 491 millones de euros. La misión de cinco años enviará una nave espacial a Marte, actuará como medio de retransmisión de las comunicaciones para las misiones de la superficie, realizará un encuentro espacial para recoger las muestras en órbita y, finalmente, las traerá a salvo a la Tierra. Antes de ser lanzadas desde la superficie de Marte a bordo del MAV, las muestras marcianas se almacenarán en unos tubos especiales que recogerá posteriormente el SFRpara el que Airbus ha comenzado ya la fase de estudio. Para desarrollar el ERO, Airbus pondrá en práctica su conocimiento relacionado con encuentros espaciales y atraques autónomos acumulado durante décadas de experiencia en navegación óptica, empleando las tecnologías del exitoso ATV (el Vehículo de Transferencia Automatizado, y los recientes desarrollos de JUICE, la primera misión europea a Júpiter. “Estamos aprovechando al máximo nuestra experiencia adquirida en misiones previas, como Rosetta, Mars Express, Venus Express, Gaia, ATV, BepiColombo y JUICE para garantizar el éxito de la misión. Traer muestras de Marte hasta la Tierra será un desafío extraordinario que llevará a la ciencia interplanetaria hasta un nuevo nivel. Airbus está encantado de enfrentarse a este reto formando parte de esta misión internacional conjunta”, afirmó Jean-Marc Nasr, responsable de Space Systems en Airbus. El ingenio espacial de 6 toneladas y 6 m de altura, que está equipado con 144 m² de paneles solares que tienen una envergadura de más de 40 m (entre los más grandes que se han construido nunca), se lanzará a bordo de un Ariane 6 en 2026 y tardará alrededor de un año en llegar a Marte. Empleará un sistema de propulsión híbrido de baja masa que combina la propulsión eléctrica para las fases de crucero y de descenso en espiral con la propulsión química para la inserción en la órbita de Marte. A su llegada, proporcionará cobertura de comunicación a la misión del róver Perseverance de la NASA y del módulo de aterrizaje para la recogida de muestras (Sample Retrieval Lander, SRL), dos elementos esenciales de la campaña MSR.Para la segunda parte de su misión, la sonda ERO tendrá que detectar, acercarse y capturar un objeto del tamaño de un balón de baloncesto llamado Orbiting Sample (OS), donde se alojan los tubos de las muestras recogidos por el SFR. Todo ello a más de 50 millones de kilómetros del centro de control terreno. Una vez capturado, el OS se sellará en un sistema secundario de contención biológica y se colocará dentro del Vehículo de Entrada a la Tierra (Earth Entry Vehicle, EEV), que constituye de hecho un tercer sistema de contención. De esta forma se garantiza que estas valiosas muestras llegan intactas a la superficie terrestre para obtener así el máximo resultado científico. El ERO tardará un año en regresar a nuestro planeta, desde donde enviará al EEV hacia un punto de aterrizaje predeterminado siguiendo una trayectoria de precisión para luego, entrar en una órbitaestable alrededor del Sol. Después del aterrizaje, las muestras se trasladarán a unas instalaciones especializadas de manipulación, donde se pondrán en cuarentena. Una vez se abran los tubos con las muestras, se tomarán una serie de medidas iniciales para elaborar un catálogo detallado y, a continuación, se destinarán unas partes específicas de estas muestras a investigaciones científicas especializadas. Airbus tendrá la responsabilidad general de la misión ERO, desarrollará la nave espacial en Toulouse y realizará el análisis de la misión en Stevenage. Thales Alenia Space Turín también tendrá un papel relevante en esta misión, ya que montará la sonda espacial, desarrollará el sistema de comunicación y proporcionará el Módulo de Inserción en Órbita. Por su parte, ArianeGroup suministrará los motores iónicos RIT-2X que propulsarán la misión. Acerca de la misión Retorno de Muestras de MarteRetorno de Muestras de Marte es un conjunto de tres misiones que se lanzarán por separado y que juntas lograrán el objetivo de traer muestras de Marte a la Tierra antes de finales de 2031.El róver Mars 2020, llamado Perseverance y liderado por la NASA, se lanzó en julio de 2020 con el objetivo de aterrizar en Marte en febrero de 2021. Perseverance tomará muestras de Marte, las almacenará en tubos de muestras y dejará estos tubos en uno o más depósitos para que la misión SRL los capture posteriormente utilizando su Vehículo de Recogida de Muestras europeo (Sample Fetch Rover, SFR). La sonda de aterrizaje para la recuperación de muestras (Sample Retrieval Lander, SRL) liderada por la NASA se lanzará en 2026 y comprende una plataforma de superficie con un brazo robótico para la transferencia de muestras (Sample Transfer Arm, STA), un Vehículo de Recogida de Muestras (Sample Fetch Rover, SFR) y un Vehículo de Ascenso a Marte (Mars Ascent System, MAV). La plataforma de superficie aterrizará en las proximidades del depósito que contiene los tubos con las muestras situado en el cráter Jezero. El SFR navegará, localizará y recogerá los tubos con las muestras y regresará a la plataforma del módulo de aterrizaje. El STA transferirá los tubos con las muestras al Orbiting Sample (OS) y cargará esta cápsula a bordo del MAV. El MAV lanzará la cápsula OS a la órbita marciana, donde la sonda ERO estará esperándola

    READ MORE